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ABSTRACT

Background: We aimed to accurately and efficiently evaluate Programmed Death
Ligand-1 (PD-L1) expression by relevant radiomic studies of fluoro-18-
fluorodeoxyglucose (18F-FDG) Positron Emission Tomography/Computed Tomography
(PET/CT) images in nasopharyngeal carcinoma (NPC) patients. Materials and Methods:
This retrospective study included 60 untreated NPC patients had PET/CT. Cohorts of
training and validation were randomly selected among the patients. The CT and PET
radiomic features from the training cohort were obtained and screened, to construct
CT, PET and combined models. Finally, verification and comparative analysis were
performed. Results: According to the analysis, the maximum Standardized Uptake
Value (SUVmax) alone was the standalone predictive indicator of PD-L1 presence level,
thus incorporated into the combined model. Among our training cohort, the CT, PET,
and combined models’ Area under Curve (AUC) values respectively were 0.837, 0.852,
and 0.948, demonstrating excellent discrimination and calibration. However, the
combined model had higher AUC values in the cohorts of training and validation,
reaching AUCs of 0.948 and 0.802, respectively. Clinical decision curve analysis (DCA)
further illustrated Combined model surpassed both the CT and PET models, attaining a
benefit threshold probability of more than 5% and a net benefit (NB) of 0.450 at the
optimal threshold probability. Conclusion: The combined predictive model based on
relevant radiomic studies of PET/CT scans performed better than other models in
assessing individualized PD-L1 expression in NPC.

INTRODUCTION

NPC is an aggressive carcinoma that arises from
the nasopharynx’s columnar epithelium mucosa. The
illness has a noticeable geographic dispersion and is
linked to both environmental and genetic factors. It is
most common in northern Africa, southern China, and
southeast Asia. Even while NPC incidence has
decreased recently worldwide, in endemic areas it
remains one of the primary reasons of malignancy
and cancer-related mortality (1-3). Among these high-
prevalence areas, the most common histopathological
subtype  of nasopharyngeal carcinoma @ is
nonkeratinizing squamous cell carcinoma, relating
with the Epstein-Barr Virus (EBV) (1. 4. Historically,
locally and early advanced NPC were primarily
treated with radiotherapy alone or in combination
with chemotherapy. Patients are prone to distant
metastasis or local recurrence and exhibit a poor
response to conventional treatment and poor
prognosis due to chemotherapy resistance (. 5-8),
However, with the rapid development and
breakthrough of immune checkpoint blockade

therapy for solid neoplasm, immunotherapy targeting
PD-L1/PD-1 (Programmed Death-1) has become a
recent research hotspot. Several clinical trials and
research have shown that PD-L1/PD-1 inhibitor
single therapy as also as combination with
chemotherapy or radiotherapy have improved
efficacy and prognosis in the antitumour treatment of
NPC (15, In 2021, China approved PD-L1/PD-1
inhibitors in the metastatic, recurring, or resistant
nasopharyngeal cancer as a first-line
recommendation. These inhibitors, combined with
cisplatin and gemcitabine, are now recognized as one
of the new standard first-line recommendations,
providing advanced NPC patients with new hope for
successful treatment (16),

Before undergoing immunotherapy, PD-L1
expression is evaluated via immunohistochemistry
(IHC) on tumor tissue samples, which can be invasive
and affected by tumor heterogeneity (17). Therefore,
developing a noninvasive and accurate method for
assessing PD-L1 expression status is particularly
important for predicting and screening tumor
patients who may gain from immunotherapy. As a
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rapidly developing emerging field, radiomics has
achieved remarkable results in genophenotype
prediction, prognosis monitoring, treatment plan
decision-making, tumor staging and grading, disease
diagnosis and differential diagnosis, and efficacy
evaluation (18-21), Several studies have utilized
radiomic features, including MRI (Magnetic
Resonance Imaging), CT, and PET/CT to develop
prediction models for PD-L1 expression with several
cancer forms, like non-small cell lung carcinoma
(NSCLC) (22-27), breast carcinoma (28), early-stage lung
adenocarcinoma (29), hepatocellular carcinoma (9.
gastric adenocarcinoma (31 32), and renal clear cell
carcinoma (33), However, to our knowledge, no studies
have developed radiomic-related predictive models
for PD-L1 expression in NPC.

Therefore, our goal in this research was to
construct an effective personal prediction model for
nasopharyngeal cancer patients' PD-L1 expression by
analyzing the radiomic characteristics of PET/CT,
and the important relevant metabolic and
clinicopathological characteristics to screen patients
who may profit from immunotherapy. This study's
novelty lies in being the first attempt to
noninvasively forecast the PD-L1 expression in NPC
through combining radiomics and PET/CT.

MATERIALS AND METHODS

Patients

We retrospectively analyzed 60 individuals had
18F-FDG PET/CT scans at the First Affiliated Hospital
of Guangzhou University of Chinese Medicine from
June 2021 to April 2023 and were pathologically
confirmed to have NPC. The following were the
inclusion criteria: (1) pathologically confirmed
nasopharyngeal carcinoma and PD-L1 IHC
examination; (2) Examination with PET/CT within 2
weeks before the biopsy and treatment; and (3) full
clinical and other pathological information, such as
gender, age, smoking history, plasma EBV-DNA
quantification before treatment, Ki-67 expression,
EBER and tumor stage. The following were the
exclusion criteria: (1) received any antitumour
therapy, such as radiotherapy or chemotherapy, prior
to 18F-FDG PET/CT and/or pathological examination;
(2) possessed a prior medical history of cancerous
tumors; and (3) had incomplete clinical and
pathological data. The eighth eversion of staging
system developed by AJCC (American Joint
Committee on Cancer) was used, and PET/CT scans
and related clinicopathological information were
collected from all patients. Computer-generated
random numbers were employed to separate
individuals into the cohorts for validation and
training ata 1:2 ratio.

Detection of PD-L1 expression
Surgical specimens or biopsy were embedded in

paraffin, formalin-fixed, and then cut at a thickness of
4 pm in serial sections. PD-L1 expression was
measured using an automated immunohistochemis-
try stain (Roche BenchMark XT, USA) and a detection
kit (SP263 pharmDx, USA) and was evaluated
separately by two pathologists who did not have
access to the clinical information. The calculation
method utilized was the TPS, in which the overall
quantity of viable tumorous cells was divided by the
count of PD-L1-positive tumorous cells and then
expanded by 100 fold. A result of 250% was defined
as high expression.

PET/CT imaging

Before PET/CT, patients had to keep their fasting
blood sugar levels under 11 mmol/L and to fast for at
least 6 hours. Following a venous infusion of 3.70-
555 MBq/kg 18F-FDG ('8F-FDG LV. Injectable
Solution, Atom Hi-Tech, CN) and quiet rest for 1 hour,
data acquisition was executed using a PET/CT system
(GE Discovery MI, USA). A CT scan was conducted
using the following parameters: 120 kV of voltage,
120 mA of current, 70 cm of warp field of view (FOV),
0.984:1 pitch, 0.8 s of rotation time, 3.75 mm of slice
thickness, 512 x 512 matrix. This was followed by a
PET scan, which took 7-8 beds per patient and 2-3
minutes per bed.

Image segmentation and radiomic feature
extraction

LIFEx software (LIFEx 7.3.0 software, FR) was
utilized for importing those DICOM-formatted PET
and CT images (4. Two highly skilled nuclear
medical experts manually mapped the primary tumor
to obtain a three-dimensional VOI (Volume of
Interest) layer by layer and determined TLG (Total
Lesion Glycolysis) and MTV (Metabolic Tumor
Volume) at a threshold of forty-one percent of
SUVmax. MRI and Contrast-enhanced CT are
sometimes used to help determine the VOIL. The
spatially resampled voxel size was 1x1x1 mm3. The
CT image was discretized to 400 in the absolute range
of -1000 to 1000, while the PET image was
discretized to 64 in the absolute range of 0 to 30.
Subsequently, radiomic feature extraction was
carried out. Utilizing the intraclass correlation
coefficient (ICC), the features' repeatability and
dependability were assessed, and patients with an
ICC>0.75 were retained. The extracted feature values
were normalized using the "StandardScaler” function
in the open-source software Python (Python 3.8
software, NL) "sklearn Preprocessing” module.

Radiomics feature selection and machine learning
model construction

Those useful PET and CT features were selected
separately from our training group using LASSO
(Least Absolute Shrinkage and Selection Operator).
The wunivariate analysis served to compare
clinicopathological indicators (including gender, age,
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smoking history, pretreatment plasma EBV-DNA
concentration, Ki-67 expression, the EBER, and
tumour stage) and related metabolic parameters
(including the MTV, TLG, and SUVmax) between the
groups with low and high PD-L1 presence among our
training cohort, and the multivariate logistic analysis
subsequently served to determine the standalone
predictive indicator substantially linked with PD-L1
expression. The support vector machine (SVM) in the
Python 3.8 "sklearn" module was used to construct
CT, PET and combined machine learning models. The
SVM model was established using an internal matrix
laboratory (MATLAB) script, the linear kernel
function was selected, the penalty coefficient C was
assigned to 1, and the parameters were adjusted by
two 3-fold cross-validations. Figure 1 shows the
model-building process used in our study.

Patients with pathologically confirmed NPC who
underwent 18F-FDG PET/CT before treatment

Validation set Patients selected by inclusion and exclusion criterias |
n=20 n=60
A
Training set
n=40

CT radiomi

Clinical and pathologic

features, SUVMax,MTV.TLG

ics features

PET radiomics features

Univariate and

[ Lasso rogresion mulivariate analysis

Scleeted CT radiomics feares |
n=3

Selected PET radiomics features
n=5

CT modle

I PET modle
Combined modle

Figure 1. Study flowchart of 18F-FDG PET/CT radiomics
analysis for predicting PD-L1 in nasopharyngeal carcinoma.
(18F-FDG PET/CT, fluoro-18-fluorodeoxyglucose positron
emission tomography/computed tomography; PD-L1,
programmed death ligand-1; NPC, nasopharyngeal carcinoma;
SUVmax, maximum standardized uptake value; MTV,
metabolic tumor volume; TLG, total lesion glycolysis; Lasso,
least absolute shrinkage and selection operator; SVM, support
vector machine;).

Performance evaluation of machine learning
models

Across the training and validation samples, the
ROC (Receiver Operating Characteristic) curve and
AUC were employed for evaluating models, and
sensitivity and  specificity were calculated.
Hosmer-Lemeshow test was applied to evaluate the
fitness of the model. AUC values comparing different
models was subjected to the DeLong test. By
computing NB of a number of threshold probabilities
throughout the cohort, DCA was employed for
evaluating a model's therapeutic value.

Statistical analysis
SPSS statistical analysis software (SPSS 23.0

software, USA) was dedicated to univariate analysis
(including independent sample t test, chi-square test,
or Mann-Whitney U test) and multivariate logistic
analysis. A P-value of less than 0.05 in a bilateral test
was the criterion for statistical significance.
Open-source Python 3.8 software was employed to
statistically analyze radiomic features. The
"pingouin" module was used for ICC calculations, the
"LassoCV" in the "sklearn.linear_model" module was
used for LASSO regression analysis, and the
"roc_curve" and "roc_auc_score" functions in the
"sklearn.metrics" module were used for ROC curve
plotting and AUC calculation, respectively. In
addition, we used R statistical software (R 4.0.2
software, NZ) for the Hosmer-Lemeshow test, Delong
test, and DCA curve plotting.

RESULTS

Clinicopathological features and related metabolic
parameters

Among 60 NPC individuals, the average age was
51.65 years, £11.59 years, with a male dominance of
2:1. 42 patients (70.0%) were in TNM stage III-1V,
and 36 (60.0%) exhibited high levels of PD-L1. All the
nasopharyngeal carcinoma lesions displayed
metabolic enhancement on 18F-FDG PET/CT, with a
SUVmax of 11.13+6.25. Figure 2 displays a PET/CT
image from one such patient. In table 1, all patients’
clinicopathologic and associated metabolic indicators
are summarized, and univariate examination failed to
uncover any substantial disparities (P>0.05) in these
aforementioned indicators between the training and
validation sets, signifying a balanced distribution of
baseline factors for both cohorts.

Figure 2. A 58-year-old male patient with nasopharyngeal
carcinoma. The red arrow indicates a nasopharyngeal
carcinoma lesion. PET showed obvious hypermetabolic foci in
the nasopharynx, and SUVmax was 20.4, and CT showed
obvious thickening, swelling and density reduction of the soft
tissues of the nasopharynx.

In the training cohort, PD-L1 level was high in
60.0% (24 patients) and low in 40.0% (16 patients).
The SUVmax values for PD-L1 high-level group and
low-level group were 13.17+6.27 and 7.06%4.58,
respectively. Within the training cohort, univariate
analysis showed the PD-L1 level did not correlate


http://dx.doi.org/10.61186/ijrr.23.2.26
https://mail.ijrr.com/article-1-6421-en.html

[ Downloaded from mail.ijrr.com on 2025-10-17 ]

[ DOI: 10.61186/ijrr.23.2.26 ]

450 Int. J. Radiat. Res., Vol. 23 No. 2, April 2025

with gender, age, smoking history, EBVDNA
quantification, or EBER (P>0.05; table 2); however, it
was significantly associated with Ki-67 expression,
TNM stage, SUVmax, MTV, or TLG (P<0.05; table 2).
Further multivariate logistic analysis ultimately
demonstrated the SUVmax alone was the
independent predictor of PD-L1 expression status
(OR (0dds Ratio)=1.295, 95% CI (Confidence
Interval)=1.074-1.562, P=0.007). Therefore, only the
SUVmax was used for the subsequent construction of
combination prediction model.

Table 1. The clinicopathological features and related
metabolic parameters of the training cohort and validation
cohort. (EBV, Epstein-Barr virus; EBER, EBV-associated RNA,

PD-L1, programmed death ligand-1; SUVmax, maximum
standardized uptake value; MTV, metabolic tumor volume;
TLG, total lesion glycolysis).

(table 3).

Based on the screening results, CT and PET
prediction models were constructed. In addition, the
Rad score was calculated according to the Rad scoring
formula (Radscore = }Y8=1(Fixa;), F: Radiomic
features, a: Coefficient). Rad scores of high and low
PD-L1 level groups within the training cohort
respectively were 0.1440.15 and -0.15%0.20. The
distinction held statistical significance (t=-5.220,
P=0.000; table 2). Therefore, we incorporated the
SUVmax and Rad score to construct the combined
predictive model with CT and PET radiomics.

Table 2. Univariate analysis of PD-L1 expression groupings in
training cohort. (EBV, Epstein-Barr virus; EBER, EBV-associated
RNA; PD-L1, programmed death ligand-1; SUVmax, maximum
standardized uptake value; MTV, metabolic tumor volume;
TLG, total lesion glycolysis; Rad).

Il |18(30.0%)|12(30.0%) | 6(30.0%)
NIV |42(70.0%) | 28(70.0%) | 14(70.0%)

11.13+ 10.72+ 11.96+
SUVmax 6.25 6.36 6.08 t=-0.718 |0.476

2491+ | 24.49t | 2573t
MIV | S0 | Sacg | 290y |1=0-1460.885

12069 | 121.40% | 119.27%
TG | Jeons | 10947 | 10081 | t=0:46 |0.964

Radiomics feature selection and predictive model
construction

Through LASSO regression analysis (figure 3),
three meaningful CT radiomic features and five PET
radiomic features were taken out of the training
cohort: CT _ Morphological _ Compactness 2, CT _
Morphological _ Centre Of Mass Shift, CT _ Intensity _
Histogram _ Maximum Histogram Gradient Grey
Level, PET _ Morphological _ Compactness 2, PET _
Local _ Intensity _ Based _ Local Intensity Peak, PET _
Intensity-Histogram _ Intensity Histogram Skewness,
PET _ Intensity _ Histogram _ Root Mean Square and
PET _ GLCM _ Normalized Inverse Difference Moment

. Total | Training [Validati . - 9 - 9
Variables (ngts';) (f::(;‘)g (anu:aztg;n Statistics| P Variables PD(::::)O % PD(::;E)O % Statistics| P
Age 51.65% | 51.95% [ 5105t | ._ .00 |g 579 Age(years) |50.63+9.92 | 52.83+12.93 [t=-0.578[0.567
(years) | 11.59 11.73 11.58 ) ) Sex ¢’=0.019(1.000
Sex ¢’=0.038[1.000 Male 11(68.8%) | 16(66.7%)
Male [40(66.7%)|27(67.5%)| 13(65.0%) Female 5(31.3%) 8(33.3%)
Female |20(33.3%)|13(32.5%)| 7(35.0%) Smoking history ¢’=1.039]0.407
Smoking 2-1.227 0326 Smoker 12(75.0%) 21(87.5%)
history T ) Never 4(25.0%) 3(12.5%)
Smoker [13(21.7%)| 7(17.5%) | 6(30.0%) EBV-DNA c’=1.404]0.508
Never |47(78.3%)|33(82.5%) | 14(70.0%) Normal 16(100.0%) | 22(91.7%)
EBV-DNA ¢’=0.536 | 0.595 High 0(0.0%) 2(8.3%)
Normal |56(93.3%)|38(95.0%) | 18(90.0%) Ki-67 40.63+18.06| 56.04+21.11 | t=-2.39 [0.022
High 4(6.7%) | 2(5.0%) | 2(10.0%) EBER c’=0.961[0.553
. 53.58+ 49.88+ 61.00+ Negative 2(12.5%) 1(4.2%)
Ki-67 t=-2.049 [0.055 4
20.26 21.14 16.83 , Positive 14(87.5%) | 23(95.8%)
EBER ¢’=1.579 |0.544 TNM stage ¢’=8.750[0.005
Negative | 3(5.0%) | 3(7.5%) | 0(0.0%) 1-l 9(56.3%) 3(12.5%)
Positive |57(95.0%)[37(92.5%) [20(100.0%) ] n-v 7(43.8%) 21(87.5%)
PD-L1 €’=0.000|1.000 SUVmax 7.06+4.58 | 13.17+6.27 |t=-3.342[0.002
<50% |24(40.0%)|16(40.0%) | 8(40.0%) MTV 10.67+10.84] 33.71+41.58 [t=-2.585]0.015
250% |36(60.0%) | 24(60.0%) | 12(60.0%) TLG 43.77+59.62[173.15+231.32(t=-2.613[0.014
:tl:gle 2-0.000 | 1.000 Rad -0.15+0.20 | 0.14+0.15 [t=-5.220(0.000

Table 3. Coefficients of radiological characteristics identified
through LASSO (least absolute shrinkage and selection
operator) regression. (CT, computed tomography; PET,

positron emission tomography; GLCM, gray-level
co-occurrence matrixgray).

Number Radiomic Features (F) Coefficient(a)
1 CT_Morphological_Compactness2 0.048008
2 CT_Morphological_CentreOfMassShift| 0.089310

CT_Intensity - Histogram _ Maximum |
3 HistogramGradientGreyLevel 0.048243
4 PET_Morphological_Compactness2 | -0.018537
5 PET_LocaI_Inten.5|ty_Based_LocaIInte 0.030335
nsityPeak
PET_Intensity-Histogram
6 _IntensityHistogramSkewness 0.014700
PET_Intensity-
7 Histogram_RootMeanSquare 0.040576
3 PET_GLCM_NormalisedinverseDiffere 0.069403
nceMoment

Evaluation and validation of the PD-L1 expression
prediction models
As figure 4, the CT, PET, and combined models'
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ROC curves employed to forecast PD-L1 presence
level were mapped out. Within the training group, the
CT, PET, and combined models’ AUCs respectively
were 0.837 (95% CI: 0.711-0.963), 0.852 (0.718-
0.985), and 0.948 (0.887-1.000); the optimal
thresholds were 0.64, 0.66, and 0.75, separately; the
sensitivity and specificity at the optimal threshold
were 75.0% and 81.3%, 83.3% and 81.3%, and
75.0% and 100%, separately. Within the validation
group, the above three predictive models’ AUCs
respectively were 0.781 (95% CI: 0.576-0.987), 0.583
(0.317-0.850), and 0.802 (0.601-1.000); the optimal
thresholds were 0.64, 0.62 and 0.66, separately; the
sensitivity and specificity at the optimal threshold for
each model separately were 58.3% and 100.0%,
66.7% and 62.5%, and 87.5% and 75.0%. The
findings showed that the three predictive models
performed well in terms of diagnosis, particularly the
combined model, which had better predictive ability
(AUCs of 0.948 and 0.802, respectively) within the
training and validation sets; moreover, the sensitivity
and specificity were also comparable.

10 107 10 10° 10! 100 107 10 100 10!
Lambda Lambda

msE
Caefficient
| L

Figure 3. LASSO (least absolute shrinkage and selection
operator) regression process. LASSO regression was used for
radiomics feature selection, and the best lambda (A) value was
selected by tenfold cross-validation. In the figure, the ordinate
"MSE" represents the mean square error, the ordinate
"coefficient" refers to the radiomics feature coefficient, and
the error bars is the standard deviation. (A) and (B) represent
PET radiomics feature screening, and the best A value is
0.125893, which is indicated by a dashed line. Similarly, (C)
and (D) indicate CT radiomics feature extraction, and the best
A value is 0.091030.

Hosmer-Lemeshow tests were performed on the
above three predictive models, and the calibration
demonstrated acceptable performance (P>0.05; table
4). Furthermore, the Delong test was conducted, and
as indicated in Table 4, there was no noteworthy
difference among the three models’ AUCs within the
training cohort (P>0.05); however, the AUCs of the
PET and combined models differed significantly
within the validation cohort (Z=-2.587, P=0.010).

Figure 5 reveals the DCA results for models across
the two cohorts. In the training cohort, the CT, PET,
and combined models’ probability thresholds were
>34%, >12%, and >5%, respectively; the optimal
threshold probabilities respectively were 0.64, 0.66,
and 0.75; the NB values separately were 0.317, 0.354,
and 0.450. In the validation cohort, the above three
predictive models’ probability thresholds separately
were >38%, >48%, and >39%; the optimal threshold
probabilities were 0.64, 0.62, and 0.66, separately;
the NB values were 0.250, 0.155, and 0.256,
separately. The DCA indicated that, for the majority
of the appropriate threshold probability ranges, the
combined model outperformed the two individual
models. For every 100 patients, 13.3 more PD-L1
high-expression nasopharyngeal carcinoma patients
were correctly detected using the combined model
than via the CT model ((0.450-0.317)x100%=13.3),
and 9.6 more than via the PET model ((0.450-0.354)
x100%=9.6).

Training Validation

iy

Sensitivity

— Combined

0 0 | 0 ' ' ' 5 1
oo 02 04 06 o8 10 o o o o

1-Specificity 1-Specificity

Figure 4. ROC (receiver operator characteristic) curves of the
three models in the training and validation cohorts. In the
figure, the abscissa "1-Specificity" also means false positive
rate, the ordinate "Sensitivity" means true positive rate, the
blue line represents the CT model, the green line represents

the PET model, and the orange line represents the combined

model.

o0
—cr
—per —cr
~——Combined —pe1
0
02

Training Figure 5. DCA
(decision curve
analysis) curves of
the three models in
the training and
validation cohorts.
In the figure, the
black dotted line
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model, the green
dotted line
represents the
combined model,
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reference lines.
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Table 4. Results of the Hosmer-Lemeshow and Delong tests
for the three models. (CT modle, the model based on CT
radiomics features; PET modle, the model based on PET
radiomics features; Combined modle, the model based on CT
and PET radiomics features and SUVmax).
Modles Training Validation
Statistics| P |Statistics| P

Hosmer-Lemeshow test

cT ¢’=5.491 | 0.704 | ¢’=3.903 [ 0.866
PET ¢’=5.136 | 0.743 | ¢’=8.153 |0.419
Combined ¢’=6.090 | 0.637 [c°=10.134]0.256
Delong test
CT and PET 7=-0.166 |0.8684| 7=1.175 [0.240

CT and Combined Z=-1.750 | 0.080 | 7Z=-0.143 | 0.887
PET and Combined Z=-1.7410.081 | 7=-2.587 |0.010

DISCUSSION

Accurately predicting the PD-L1 status is crucial
for developing effective clinical treatment strategies
in NPC primary tumor. This approach is especially
important  for individuals with  advanced
nasopharyngeal cancer, as precise forecasting of
PD-L1 high level can guide the use of combined
immune blockade therapy for improved treatment
efficacy and improved prognosis. Radiomics can
provide more detailed information on tumor biology
and the microenvironment complementing visual
features through comprehensive quantification of
tumor phenotypes and provides an emerging and
noninvasive research method for current research.
However, radiomic-related predictive models for
PD-L1 expression status in NPC were not developed
prior to our study, which may be related to
significant geographical differences in the disease.
Several studies, such as the research conducted by
Zheng et al, have investigated PD-L1's expression
level before surgery for neck and head squamous cell
tumors, but the research did not include
nasopharyngeal carcinoma patients. Additionally, the
focus of the study was on traditional contrast-
enhanced CT imaging omics, which does not involve
relevant functional metabolic information (35 36).

In our study, advanced imaging with 18F-FDG
PET/CT further reflected intratumor heterogeneity at
the functional metabolic level G7). Univariate analysis
and multivariate logistic analysis ultimately revealed
the SUVmax was a separate forecaster of the PD-L1
expression state, which was incorporated into the
combined model. Previous research have found the
positive relationship between FDG uptake and PD-L1
presence level in nasopharyngeal tumor cells (38, 39),
Increased FDG uptake is generally linked to the
production of glucose transporter type 1 (GLUT1),
Hypoxia-Inducible = Factor-la  (HIF-1a), and
phosphorylated Signal Transducer and Activator of
Transcription 3 (pSTAT3) 8, while Latent
Membrane Protein 1 (LMP1) of EBV can increase
PD-L1 expression in tumor cells while increasing
pSTATS3; conversely, blocking pSTAT3 can reduce

LMP1-induced PD-L1 expression (39).

In this research, according to the radiomic
characteristics of PET/CT before surgery in NPC
patients and the above independent predictor
SUVmax, we developed CT, PET and combined
models of prediction for expression of PD-L1. The
combined model had stable and good diagnostic
performance and good clinical benefit. The CT model
in the validation group was less sensitive, and the
PET model's overall performance in the validation
group was not as good as that in the training cohort,
which might be mainly related to the insufficient
robustness of the model because of the study's small
sample size. In other studies of neck and head
squamous cell tumors, Zheng's team constructed
PD-L1 expression radiomics prediction models based
on enhanced CT with large sample sizes; in the
cohorts of training and validation, the model’s AUCs
in identifying PD-L1 positivity and negativity
respectively were 0.802 and 0.852, additionally the
AUCs for the model, distinguishing PD-L1 height and
low, were 0.889 and 0.834, respectively (35 36), We
hypothesize that endovascular contrast media
improve the difference in density between diseased
and normal tissue and provide blood supply to the
lesion, which may help enhance the diagnostic
performance and sensitivity of the model. In our
future research, we may consider combining
angiography with PET/CT imaging along with
expanding the size of the sample.

In addition, studies predicting PD-L1 expression
in other malignancies via 18F-FDG PET/CT radiomics
have focused mainly on NSCLC. In an initial PET/CT
imaging study of 334 NSCLC patients, Zhao et al
reported that clinical stage was an important
indicator of various PD-L1 expression, and their
combined radiomics model’s AUCs respectively were
0.769 and 0.718 within the groups of training and
validation (22). In another PET/CT radiomics study of
255 NSCLC patients, Li et al. constructed CT, PET, and
combined models that predicted PD-L1 high and low
status among their validation set, reaching respective
AUCs of 0.661, 0.745, and 0.762, and the combined
model outperformed the separate CT and PET models
(#0), Compared to these studies, which included
different tumor types, we constructed radiomic
prediction models that included different features,
but the prediction models integrating PET/CT
radiomics characteristics and other risk factors had
better diagnostic efficacy in predicting tumors PD-L1
level.

Within our study, the combined model based on
PET/CT scans was the first non-invasive prediction
model for PD-L1 expression in NPC; this model has
good diagnostic performance and clinical application
value. The finding preliminarily showed the PET/CT
radiomic study’s potential value for effectively
estimating PD-L1 level in NPC, as in other
malignancies (22 23. 25, Nonetheless, our study
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encounters certain constraints, attributable to its
retrospective design and limited sample size, and it is
necessary to expand sample and carry out
prospective multicenter research and validation in
the future.

CONCLUSION

In this study, a combined model based on the
independent predictor SUVmax and the radiomic
characteristics of PET/CT was constructed to
evaluate PD-L1 status in NPC and was found to be
superior to CT or PET alone. This finding reveals that
this combined model may be effective at predicting
individuals with elevated PD-L1 expression, giving
medical professionals a new strategy for screening
patients who might benefit from immunotherapy.
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